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19. Abstract - Continued

existence of closed-form free vibrations solutions for composite wings with elastic
coupling and constraint of warping was established. A revelation from these closed-form
solutions is that, elastic coupling lowers the coupled frequencies (in fact a signifi-
cant amount of coupling could reduce the first frequency to almost zero. The discovery
of the closed-form solutions for the free vibration 7hich seems to mark the first time
such solutions were ever obtained, not only led to answers to a number of previously un-
answered questions but also raised new unanswered questions such as "Does the aeroelas-
tic divergence of flutter problem of such wings have any closed-form solutions".

A main goal of the second year investigation is therefore essentially to find the answer
to the above mentioned question. Accordingly in the first quarter, efforts were concen-
trated on determining the possibility of finding closed-form solutions to the divergence
problem. The investigation led to two possible methods of obtaining such solutions.
These "ethods are (A) the "elimination" approach (which was used for the free vibration)
and (b) the method of Laplace transformation. Although it's already known that (a)
works, (b) was implemented in formulating the analytical expressions for the closed-form
solution of the divergence problem due to an anticipated relative ease. These newly
derived closed-form expressions are shown in this report. The numerical approach used
for extracting the eigenvalues from the closed-form exprwsaions for the free vibration
was studied carefully to determine how it might be used to extract the eigenvalues (and
eventually the divergence flight velocities) from the closed form expressions derived
for the divergence phenomenon. The results extracted showed agreement with existing re-
sults and seem to establish new trends.



TABLE OF CONTENTS

Section Page

1. Abstract 1

2.0 Nomenclature 3

3.0 Introduction 5

4.0 Research Objectives 10

5.0 Status of Research Effort 12

5.2 Accurate Divergence Theory for Composite 16
Supermaneuverable Aircraft Wings, by
Gabriel A. Oyibo and James Bentson

5.3 Exact Solutions to Aeroelastic Oscillations 45
of Composite Aircraft Wings with Warping
Constraint and Elastic Coupling

5.4 Vibration Tailoring 80

5.5 Some Implications of Warping Restraint on
The Behavior of Composite Anisotropic Beams 119

6.0 Status of Publications 132

7.0 Name, address and telephone number of pro- 133
fessional personnel

AC, ir

iii



1.0 ABSTRACT

The investigation of an aeroelastically induced constrained warping

ohenomenon for a comoosite, suoermaneuverable tyne aircraft wing

has continued in this second year of the study. The first year

investiaation was concentrated mainly on the static phenomena and

the search for closed form solutions for free vibration of air-

craft wings having constrained warning in the presence of elastic

counlinq. The wing is analytically modelled as a straight flat lam-

inated olate. Various forms of highly simolified aerodynamic loads

are emoloyed in the analysis. The free vibrations and stability

asoects of this phenomenon are examined to obtain some physical in-

siqhts and to determine its importance and/or design imolications.

Analytical tools employed include an affine transformation concent

which was formulated previously (by the present princioal investi-

gator) as well as a non-dimensionalization scheme. With the helo

of these tools, an evolution of effective warping parameters with

which to study this phenomenon was carried out. The virtual work

theorem and variational principles were used to derive the equa-

tions of motion based on the assumed wina disolacements. The exis-

tence of closed-form free vibrations solutions for composite winas

with elastic coupling and constraint of warping was established.

A revelation from these closed-form solutions is that, elastic

couplinq lowers the coupled frequencies (in fact a significant a-

mount of coupling could reduce the first freauency to almost zero.

Ii te discovery of the closed-form solutions for the free vibration

which seems to mark the first time such solutions were ever ob-

tained, not onl led to answers to a number of oreviously unan-

swered euestions but also raised new unanswered cuestions such aF
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"Does the aeroelastic diveraence of flutter problem of such wings

have any closed-form solutions".

A main goal of the second year investigation is therefore essen-

tiallv to find the answer to the above mentioned question. Accor--

dingly in the first quarter, efforts were concentrated on deter-

mining the nossibility of finding closed-form solutions to the di-

vergence problem. The investigation led to two possible methods

of obtainina such solutions. These methods are (a) the "elimina-

tion" aporoach (which was used for the free vibration) and (b) the

method of Laplace transformation. Although it's already known

that (a) works, (b) was implemented in formulating the analytical

exoressions for the closed-form solution of the divergence prob-

lem due to an anticipated relative ease. These newly derived

closed-form expressions are shown in this report. The numerical

aporoach used for extracting the eigenvalues from the closed-form

expressions for the free vibration was studied carefully to de-

termine how it might be used to extract the eiqenvalues (and

eventually the divergence flight velocities) from the closed form

exoressions derived for the divergence phenomenon. The results

extracted showed agreement with existing results and seem to es-

tablish new trends.

2



2.0 NOMENCLATURE

ai  = chordwise integrals

c ,c = affine space half-chord and chord, respectively

D.. = elastic constantsI3

e = parameter that measures the location of the
reference axis relative to mid-chord

EI, GJ = bending and torsional stiffness, respectively

= wing box depth

(h ,ao) = affine space bending and torsional displacement,
respectively

K,So = elastic coupling and warping stiffness, respec-
tively

k.. = elemental stiffness parameter

k = Strouhal number0

L ,M = affine space running aerodynamic lift and mo-
ments, respectively

k = affine space half-span for the wing0

m = affine space mass per unit span

(ApoAp0 ) = differential aerodynamic pressure distributions
in physical and affine space, respectively

t = time

UUo = virtual work expressions in physical and affine
0 space, respectively

Uf = flutter speed

(xF#,z,) , (x 1 y0 'Z 0) = physical and affine space coordinates, respec-
tively

yi,6i,8i = displacement shape functions

r,LIL 2 D * ,D *o f = generic nondimensionalized stiffness parameters

0o = affine mass ratio parameter

Sij,C = Poisson ratios and generalized Poisson's ratio,
respectively

X = divergence parameter
o
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p,p" = affine space material and air density, re-

spectively

o = twisting displacements

w = displacement

W = vibration frequency

11 4



3.nl INTRODUCTION

In the late 1960's designers began to investigate the possibility

of exploiting the directional properties of composite materials

to improve aeroelastic characteristics of lifting surfaces. For

example, superfighter designers may aeroelastically tailor a wing

so that it deforms to the optimum camber under maneuvering loads.

For instance, a wing can be tailed so that its leading edge will

twist downward under the stress of a tight turn, thereby decreas-

ing the wing's angle of attack and hence reduce drag.

Exploitation of the directional properties of composite materials

to solve aeroelastic instability problems (known as aeroelastic

tailoring) may enhance the performance of future high performance

military aircraft, particularly the super-maneuverable concepts.

This stems from the need for future military weapon systems to ex-

hibit high performance and minimum vulnerability (e.g.; minimum

radar cross-sectional area). These requirements may lead to unor-

thodox aircraft configurations which in turn result in unorthodox

aeroelastic instability problems (e.g. the X-29 primary mode of

instability, called the 'body freedom' flutter).

Perhaps the aeroelastic tailoring concept would have been dis-

covered much earilier if the physics of anisotropic aeroelasticity

were more apparent. This inherent physical intractability is large-

ly due to the existence of numerous variables, e.g.; flight param-

eters, several composite directional properties, fiber orientation

angles, etc., which are not even truly independent, in the aniso-
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trcpic system. This state of affairs is therefore analogous to

that which existed in the basic rigid body aerodynamics before

the advent of the similarity rule theory. This theory clearly

revealed that, the utilization of non-dimensionalized groups of

variables, e.g.; Reynolds, Mach, Strouhal, Froude numbers etc.,

provide significantly superior physical insight to the problem

than the individual physical variables. The new methodology that

is being used as the basic tool in this research program is basi-

cally the aeroelastic equivalent of the aerodynamic similarity

rule. The expected superiority of this new approach over the

state-of-the-art (SOA) counterpart, which utilizes individual

physical variables, especially in terms of physical insights, has

been demonstrated in references 1-10. For example, a high-aspect-

ratio composite wing could behave aeroelastically like a low as-

pect ratio wing and vice-versa. Similarity parameters can expose

conditions for which this might happen. This is significant, (for

instance) in the light of the important role played by the wing

aspect ratio in the aerodynamics approximations for an aeroelastic

analysis. This result may t.erefore be suggesting some new form

of coupling between the elastic and aerodynamic equations in com-

posite wing aeroelasticity. A fundamental aspect of this new

methodology has been used in studies at Purdue University.1 1 and

MIT12

In this research, an investigation of a wing's spanwise sectional

distortion (warping) resulting from aerodynamic forces and its in-

fluence on the wing's free vibrations, as well as (aeroelastic)

stability, is being carried out. In particular, St. Venant's tor-

6



sional/twisting theory, which is currently widely used for esti-

mating the wing's twisting displacements has been examined with

the help of the new methodology, to determine its limitations,

when applied to wings fabricated of composite materials. The

relevance and significance of this study for the newly emerging

supermaneuverable type aircraft may be seen in the light of the

fact that (a) supermaneuverability is characterized by high angle

of attack which implies high twisting aerodynamic forces, and

(b) most aircraft designers believe future aircraft will be fabri-

cated of 40-70% composite materials.

When the St. Venant's torsional theory is used to estimate a wing's

twisting displacement and/or forces, the fact that the wing's root

section's distortion is relatively small compared to that of other

sections is ignored. However, previous investigators have deter-

mined that such an unrealistic assumption may lead to only little

errors if the aspect ratio of the wing is very high.

The research has shown during the first phase that the conclusions

reached by previous investigators are basically true for wings fab-

ricated of metals or isotropic materials. A set of new theories is

therefore being postulated in this research effort for accurately

estimating the twisting displacements, vibrational frequencies and

instability boundaries for wings fabricated of composite materials.

7
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4.0 RESEARCH OBJECTIVES

The overall goal of this phase of the research nroqram is twofold:

first, is to formulate closed-form solutions to the aeroelastic

diverence and flutter of aircraft winas with waroing contraint

and elastic couclina, and use these to study the effects of con-

strained warnino on aeroelastic response; second is to develop new

plate-beam finite elements and use in modal analysis of vibration

and flutter to nrovide an independent check on the closed-form so-

lutions results.

The results of the efforts towards achieving this overall objective

are the subject of this final technical renort. Initially ef-

iorts were concentrated at conducting investiaations to examine

various methods (including the one already used for free vibration

studies) with which to formulate the closed-form solutions to the

divergence problem. Two analytical methods were thoroughly exam-

ined to determine their suitability for formulating the closed-

form solutions. These are: (a) the method of "elimination",

which was used to formulate the closed-form solutions to the free

vibration nroblem during the first phase of this research, and

(b) the method of Laplace Transformations. The latter method an-

pears to invoke relatively less algebra, and so was imolemented

for formulating the close-form solutions durina this first nuar-

ter. If correct, these expressions may be the first closed-form

solutions ever derived for the divergence of comoosite aircraft

wincis having warping constraint and elastic coupling. In parallel

with the analytical derivation, the numerical approach used during

the first phase of the study for extracting the eigenvalues from

the closed-form exoressions for the free vibration, have been

carefully studied to determine how it (numerical approach) may be



used for extractinq the eiqenvalues (and hence fliqht diveroence

soeeds) from the closed-form expressions just derived. The re-

sults extracted were found to be in agreement with oreviously

nublished results. This orovided the necessary confidence in

the now trends predicted by the new theory. Also in parallel

is the develooment of a new plate beam finite elements, with

which to ideendently check the closed form solutions beina gen-

erated.

11



5.0 STATUS OF RESEARCH EFFORTS

5.1 INTRODUCTION

Durina the year, the research orogram progressed accordina to olan

resultinq in the accomolishment of the-goals defined for the year.

Those goals, which have been defined in Section 4 of this reoort,

basically include a preliminary formulation and investigation of

closed-form solutions to the aeroelastic divergence oroblems of

suoermanuverable type aircraft wings (fabricated of composite

materials) in order to determine an effective and efficient means

with which to accurately estimate and study the effects of the

"restraint o waroina" on their mechanism of aeroelastic instabil-

ity.

In the first auarter, during the preliminary study, Prof. G. A.

Oyibo investigated and eventually formulated the expressions which

seem to reoresent the closed form solutions to the diverqence prob-

lems of aircraft wings having warping constraint and elastic couo-

lina. Prof. J. Bentson explored the numerical anproach used for

the vibration problem in order to determine how it (numerical an-

rroach) may be used to extract the divergence eigenvalues from the

closed form expressions just derived. Prof. T. A. Weisshaar is

also continuing his investigations into how a new beam-plate finite

eler4.nts may be formulated to capture the constraint of warping ef-

fect in order to nrovide results which may be used to independent-

ly check the closed-form solutions which have been, and are being

generated.

12



In the second quarter significant programming work was accom-

plished on the divergence problem and this effort is still contin-

uing. Meanwhile exciting results were obtained in the part of the

research work that calls for an independent verification of the

analytical closed form results obtained thus far in this research

program. Therefore it is a pleasure to report the following:

(i) independent results obtained from MIT seem to accurate-

ly verify our closed form results as is shown in Fig-

ure 6 in the copy of the paper, shown below, that has

been sent to the.AIAA Journal to be considered for

publication.

(ii) an elaborate, very careful, independent study by Prof.

T. A. Weisshaar and his team at Purdue University

(which is included in this report as their contribu-

tion to the program) has accurately verified our closed

form results and some of their implications. For ex-

ample, it verified our proposed physical explanation

(perhaps the very first explanation) to the phenomenon

of "modal transfer" reported previously by Purdue and

MIT.

In the third quarter, more exciting conclusions began to.

unfold, that might potentially change the way dynamicists 
look at

dynamics: it is normally thought that the usual way one 
gets a

complex determinant when a vibration eigenvalue 
problem is formu-

lated is when one has damping in the system. 
In this research we

have shown that that is not always the 
case. We have now seen

.13



that the elastic counlin (D2 6 (or D1 6 ) introduces perhaps some

"conservation" damping characteristics into the free undamped

vibration of an anisotropic wing. This results from the com-

olex nature of the determinant and the consequential fact that

the bending and torsion modes are out of phase with each oth-

er. While this discovery seems to puzzle many experienced dy-

namicists, a look at the basic eauations of motion would in-

dicate that, the term containing D2 6 (or D1 6 ) is an odd deriva-

tive (similar to the damping terms). Therefore, it would seem

that this physical insight which is perhaps most easily extrac-

ted using an analytical method, is not only meaningful but very

important.

In the final auarter, the divergence problem was studied more

carefully to evolve the physical insight into the mechanism of

diveroence instability in the presence of warning restraint and

elastic coupling. This study revealed the following:

First, it is seen that the view held by many analysts that elast-

ic counling plays a significant role in aeroelastic tailoring is

verified.

Second it is seen that another view that, higher aeroelastic sta-

bility boundaries are feasible with negative elastic coupling

(than positive elastic coupling), is basically true, but up to a

point. It is further seen that there seems to be a limit to how

negative the elastic coupling can be made to obtain better stabil-

ity boundaries - after this limit a further negative increment in

elastic couoling would seem to result in lower stability bounda-

rics.
14



Third it is found that the effective aspect ratio defined in the

first phase of this research program (A c ) for simpler models can

still be used in this relatively more complex model, to measure

the effect of warping restraint on the phenomenon of divergence

instability. The results show that ignoring the warping restraint

would lead to conservative estimates for the divergence instabil-

ity boundaries. It is also seen that the restraint of warping

effects are more important for small effective aspect ratios and/

or large elastic coupling.

15



5.2 ACCURATE DIVERGENCE THEORY FOR COMPOSITE SUPERMANEUVERABLE

AIRCRAFT WINCS

5.2.1 INTRODUCTION

Modern supermaneuverable aircraft concepts benefit a great deal

from, among other things, significant advances in materials

technology and the availability of more accurate aerodynamic pre-

diction capabilities. Supermaneuverability as a design goal in-

variably calls for an optimization of the design parameters.

Optimization may be partially accomplished for example, by using

composite materials to minimize weight. Indeed, it has been known

that these composite materials can be tailored properly to resolve

the dynamic or static instability problems of these types of air-

craft. The concept is referred to as aeroelastic tailoring.

While aeroelastic tailoring has tremendous advantages in the design

of an aircraft, the analysis which provides the basis for the

aeroelastic tailoring itself is generally very involved. This is

rather unfortunate since a good fundamental physical insight of

the tailoring mechanism is required for accurate and reliable re-

sults.

In this investigation an attempt is made to look at some dynamics

theories that can be used to understand the aeroelastic tailoring

mechanism. Specifically, the accuracy of the St. Venant torsion

theory which is relatively simple and frequently used in aeroelas-

tic analysis is examined with particular reference to the effects

of the wings aspect ratio as well as other design parameters.

16



An accurate torsion/twist theory is particularly significant for

supermaneuverable aircraft wings since supermaneuverability is

basically characterized by high angle of attack.

Although earlier studies (1,2,3) have indicated that the St. Ve-

nant's torsion theory is reasonably accurate except for aircraft

wings with fairly low aspect ratios, the theory supporting that

conclusion was based on the assumption that the wing is construc-

ted of isotropic materials. Basically the St. Venant's torsion

theory assumes that the rate of change of the wing's twist angle

with respect to the spanwise axis is constant. This assumption

is hardly accurate particularly for modern aircraft construction

in which different construction materials are employed and the

aerodynamic loads vary significantly along the wing's span. How-

ever, References 1-3 have shown that (in spite of such an inac-

curate assumption) the main parameter that determines the accur-

acy of the St. Venant's theory is the wing's aspect ratio. Thus,

it was determined that the theory is fairly accurate for moderate

to high aspect ratio wings constructed of isotropic materials.

In recent studies (4,5,6) however, it has been shown that for

wings constructed of orthotropic composite materials, the con-

clusion of References 1-3 need to be modified. Rather than using

the geometric aspect ratio of the wing to determine the accuracy

of St. Venant's twist theory, it was suggested that a generic

stiffness ratio as well as an effective aspect ratio which consid-

ers the wing's geometry and the ratio of the principal directional

stiffness should be considered in establishing the accuracy of St.

Venant's theory.

17



The present investigation is related to the studies that were ini-

tiated in References 5 and 6. In this study the first task was to

examine the role of coupling (both mass and elastic coupling) on

the accuracy of St. Venant's theory applied to static problems.

It was discovered that coupling plays a very significant role on

the accuracy of St. Venant's twist theory. The second task was to

investigate the torsional vibration for a flat plate model of an

aircraft wing fabricated of composite materials in which the con-

strained warping phenomenon is more realistically represented,

with particular emphasis on higher frequencies and to compare re-

sults with those from a representation based on St. Venant's

theory.

5.2.2 FORMULATION

Consider an aircraft wing fabricated of composite materials and

mathematically idealized as a cantileveied plate subjected to an

aerodynamic flow over its surfaces. The mathematical statement of

the virtual work theorem for such a plate model is well known and

documented. It is also known that such mathematical statements

of the virtual work theorem for a laminated plate model are char-

acterized with the existence of so many variables (in the state-

ment), reflecting the various directional properties for the lamin-

ated plate model, which would tend to interfere with any physical

insight that might be desired from a phenomenological analysis

employing such a mathematical statement. The newly discovered af-

fine transformation concept (5,6 and 7) was developed principally

to resolve such a problem.

18



This new concept therefore can be used to evolve the mathematical

statement of the virtual work theorem in an affine space given by

the following equation.

6Uo = 0 =+ f2D* (2 -)

0oA (A)

+ fw, w, + (W, )2+ L1 W w L L W W' a dxoxo 'YQYoJ oL o Xox Y~ o o c -d
x 0x 0YO 01 YO 0 x0 x0 0 Y0 0 OY0 x OYC 0

"6 po;2dxodyOdt + APO 6 wdxodyodt

A A

where:

1/4 0 12 +2D66
02 - 1/2

0 D D22\ D) (D011 D02)1/2 = (D11C22) 1,2

4L 16 L 4D025L1 (Di3/414(2 /4 11L4(n 324

2;)(D 1 ) " ( 22)

4 C~ = ___ =Ph
0 22 

022

19



D. are the elastic constants, p, is the material density, Ap1 ]

is the differential pressure distribution, w is the displacement,

t is the time, A integrals represent area integrals and h is the

wing box depth.

Equations (1) and (2) therefore form the basis of the newly de-

veloped methodology. The equations of motion of a plate model of

an aircraft wing can now be derived by prescribing a realistic

wing displacement and using Equation (1).

When Equation (1) is compared to its physical space counterpart,

it is seen that Equation (1) has fewer variables. It is also seen

thai Equation (1) contains only non-dimensionalized stiffness quan-

tities (compared to dimensional stiffness quantities in its physi-

cal space counterpart). Another feature of this new methodology

which makes it unique is that the non-dimensionalization (a conse-

quence of the affine transformation) is accomplished before assum-

ing the wing deformations. This means that the non-dimensionaliza-

tion is independent of how the wing deforms. A non-dimensionaliza-

tion scheme that depends on a particular assumption of the wings

deformations could lead the analyst to an incorrect physical inter-

pretation of results, since the wing's deformations assumptions

have inherent errors because they are based on the analyst's judg-

ments and experience. This observation may become clearer during

the evolution of a warping parameter with which to study the ef-

fects of the warping constraint phenomenon on the status and dyna-

mics of a wing fabricated of composite materials later in this study.
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If the chordwise curvature is neglected in an initial approxima-

tion, the wing's deformation may be assumed as follows:

w(tx 0,Y o ) h0 (tY) + x 0 ao(t,yo ) (3)

where h and r are the bending and twisting displacements, re-

spectively.

It can be shown that when Equation (3) is substituted into Equation

(1) and the variational calculus is carried out for arbitrary h0

and -A the following equations of motion are obtained:

ahV + a iv + aa iii ..p0 a L
1 0 2 5 o + Poa2 6o

ah -ahii+ a iv + a a + ah = M
so a 43 0 Poa3 po2o (4)

where:
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a1  0 ~. dx 0a 2  f SEO x 0 dx 01ec 0  e 0

a 3 f C X 0dx 0 a84 2f e o D*(1-E)dx 0

cI
L 0 pdx a =f o L dx 0L0  f JeE0  p0 x0  ~a

0

m 0 ~ 0  4O APdx 0

-00<eo ; 0 -e

( ) -) c ( y0 (6
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5.2.3 EVOLUTION OF' WARPING PARAMETERS

The evolution of the warping parameter with which to study the con-

strained aeroelastic warping phenomenon for wings fabricated of

composite materials is a process that depends on the sophistication

of the wing's mathematical model; whether coupling effects are in-

cluded, whether the wing's chordwise curvatures are included and

so on. Therefore, any warping parameter is as good as the corres-

ponding wing's displacements assumptions. However, Equation (1)

makes it possible for the analyst to determine its effective inde-

pendent variables even before the displacement assumptions are made.

By non-dimensionalizing the spanwise space variable in Equation (4),

depending on whether one is interested in the static, dynamic,

coupled or uncoupled displacements, one of the following warping

parameters may be useful.

x C CO 0 0D

(7)

-Ac :j~ -Co 0 - 8
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where:

0 2 (10)2
* . a2

(Q /Co) is defined as the wing's effective aspect ratio and Do*

and L are the generalized stiffness and coupling ratios, respec-

tively (defined in earlier work such as References 5 and 6).

Equations (7) thru (9) represent the appropriate warping parame-

Ier for dynamic deformation, static displacement with elastic

cross-coupling, and static deformation with "geometric" coupling

(e $ 1), respectively.

It was discovered in this study that evolving the warping parame-

ter in a manner shown in Equations (1) thru (3), should enable

one to investigate the effects of warping on the composite wing's

dynamics (or the accuracy of St. Venant's theory) effectively.

From the lamination theory for composites it is known that while

D * and (Z 0/C ) are always positive, L and a2 can be positive or

negative. However, from Equations (1) and (3), it is clear that

whether a composite wing has positive or negative coupling, the

warping effect (in terms of c) is unchanged.
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Using the Laplace transform method on the divergence form of equa-

tions 4 in which strip aerodynamic theory is used, the following

Laplace function becomes important in the divergence problem,

F1 (S) 9 13 [s7_ a14s5+ a15s a16 s 3 + a17s a 1 8] (7)

where

(a 1 a 4 -a 5  F 2a3
a1 3  1 3 ,a 1 4  15-

a1a 3  ala 3

F4a5-3F3a F3a5-F2a 4

a1 6  , a17

a1a 3  a1a 3

1 - , s is Laplace variable,

181 1 3 (i=1,2,3,4) are aerodynamic forces and

moments

Let

2 2 2 2 2 2F l (s) - a 1 3 [(s+b) 2+a I ] [(s+b2) +a 2 ] [(s+b3 ) +a 3 ] [s+b4 ]

(8)

T 0 1 (s) = a 1 3 [s 4 +9 0 1 22 + a 0 2 s + a 0 3 ] (9)

a 5  3 F2 5 F4
a01 ,- a0 2 - , a 0 3 -

a1a5 a1a3 ala3

F 14(s) = [F l ( s ) / ( s + b 4 ) ]
TO 1 (-b4 )

F0 1 4 (-b 4 )
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F011(s) = F 1 (s)/[(s+b )2+a 1
2

T0 1 (-b1
+ia1 )

F0 1 1 (-b1 +ia1 )

p0 1 1 6  =+ ) P

311 a ' POll 0115 + 1  0116

(10)

F0 12 (s) = FI(s)/f(s+b2 ) 2+a 2

T0 1 (-b 1+ia 1)P0115+i0116 F Oil (- b l1+ ia I1)

f P 0116 +bl
011 - a1  ' P0l1 = 0115 a 1  0116

F0 1 2 (s) = F(s)/(s+b2) +a2

Tol (-b2+ia 2 )

+0125 +  0126 F 0 1 2 (-b2 +ia 2 )

P 0126 
b

f012 a2  ' P012 - r 0125 a2  0126

F01 3 (s) = FI(s)/[(s+b3 ) 2+a 2

T 0 1 (-b 3 + ia3 )

P0 1 35b 3 P0 1 3 6  (12)
F0 1 3 (-b3+ia 3 )

P 0 1 3 6  , 0 + ( b 3

013 a3  013 P0135 + 3  0136
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T 02(s) = a1 a 3 [a 0 4 s + a 0 5 ]

aF4 a5F 2
a04  - , a0 5 _ _ (13)

al1a 3  al1a 3

PU24 = T02 (-b4 )/F0 1 4 (-b4 )

T 0 2 (-b 1 +ia I ) (14)
0215 0216 F0 1 1 (-b1 +ia)

P 0 2 1 6 = P0 +(-i)P

f021 - a1  P021 = pO215 + a1  P0216

p +ip T 02 (-b 2+ia 2 )

0225 0226 F 0 1 2 (-b2+ia 2 ) (15)

f 0226
022 - a 2  P022 0225 a 2P 0 2 2 6

T0 2 (-b3+ia 3 )

0235 + 0236 = F 0 1 3 (-b 3+ia 3) (16)

P 0 2 3 6
f023 - a3  '023 p 0235 + a3  P0 2 3 6

(s) 3 a 3 F 2
T03 a 1 a 3 [s + a°6] a0 6

a 1a 3  (17)

ST03 (-b 4 )

034 - 4(-b 4 )
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T 0 3 (-b1 +ia 1 ) f p0 3 1 6
P0315 + i0316 F01 (-b +ia )031 a 1

(18)
b

P031 = 0315 + a i P0316

T 0 3 (-b2+ia 2 ) P 0 3 2 6

0325 0326 - F0 12(-b 2+ia 2) f032 a2  (19)

b 2
P 0 3 2  P 0 3 2 5 + (2) P0326

T0 3 (-b3+ia 3 ) P 0336

P0 3 3 5 + i0336 = F0 1 3 (-b 3 +ia 3 ) ;f033 - a 3  (20)

b 3

P033 p 0 3 3 5 + (a) P 0 3 3 6

2 aal alF-4

04 1 3 [a 0 8 s + a 0 9 ] a 0 8  , a 0 9 -

a1a3 a1a3

(21)

P - T 0 4 (-b4)

044 F 0 4 (-b 4 )

+ T0 4 (-b1 +ia1) P0 4 1 6

0415 0416 - F0 1 1 (-b 1 +ia1 ) 041 a 1

041 0 4 1 5 + (1) P0 4 1 6
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T (-b +ia P0 4 2 6

0425 0426 F0 1 2 (-b2 +ia2 ) 042 a
(23)

042= + (a2) 0426

+ - T0 4 (-b3 +ia 3 ) f P0 4 3 6

0435 0436 F0 13(-b 3 +ia3 ) ' 043 a3 (24)

p + (_)pP043 0435 a 3  0436

T 2 1 (S) = a 5 FI(S) - (F1 + -a5 s )T 0 1 (S)

(25)

T2 1 0 (s) = s(a,s 3+F 2 )FI(s)

Let

F2 1 0 (s) s[(s+) 2 + a ] [(s+ 2 ) 2  ] [ (s+ 3 ) +c2

(26)

2 2|
[s+ 4 ] [s+ 5 ] [(s+B 6 ) +ct6 ]

T 2 1 (s) P7 p 4  t5 + fh + p hF2()= ----- + - + +22

F21(S) F2 1 0 (s) s s+4 s+5 (S+ +) + 2

n=1,2,3,6

(27)
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or in proper notation

22l7 p 14 P2 15  f21ns  P21n211 + S+ 14 + s -S n 2+ a 2F2 1 (s) -- s +5( + n  2 + e n

n=1,2,3,6

(28)

or

N(S) PMN7 PMN4 + PMN5 + MNh MNh
Ms+ 4  S+~ 5 / (S+ n ) 2+x n 2

n=1,2, 3 ,6

(29)

MN = 21,22,23,24

Define

F2 1 (s ) = F 2 1 0 (S)/[(S+ n) 2+a 2 ] , n = 1,2,3,6

F 2 1 n(s) = F 2 2 n(s) = F 2 3 n(s) = F 2 4 n(S) (30)

F217 (s) = F2 1 0 (s)/s F214 (s) = F 2 1 0 (s)/(s+ 4 )

(31)

F2 1 5 (s) = F210(s)/(s+ 5)
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T 2 1 (0) T21(-a 4 )

P217 - F2 1 7 (0) ' 24 214(-4 )

(32)

T 2 1 (-5)

P215 F 2 1 5 (-85)

T 21 (- 1+OtI )

P2115 + i P2116 F2 11 (- 1+ix 1 )

(33)

P 2 1 1 6  = P + (IP
2' P211 2115 U 1 2116

or

T21 (- n+i n)

P21n5 + iP21n6 F (- +ic.) n 1,2,3,6 (34)
21n n n

f 2 P21n = 21n5 + (s--) P2 6  (35)
n n

Similarly

T 2 2 (s) = (+a5s3) (alF 4 S-a 5 F 2) -alsFl(s) (36)

T 2 2 (0) T 22(- 4 )

P227 F F217(OT P224 - F2 1 4 (- 4 )
(37)

T 2 2 (- 5)

225 F 2 1 5 (- 5)
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T2 (- n

P22nsiP22n6 F 21n(- +ian )

P 22n6 
-n

22n a ' P22n 22n5 a n 22n6 (38)n n

T23(s)-- a3 1(FI+a55 3 ) (a1 s 3+F2)

T 2 3 (0) T 2 3 (- 4) T 2 3 (-a5 )

237 - F 2 1 7 (0) ' P234 - F 2 1 4 (- 4) ' P235 = F2 1 5 (- 5)

T2 3 (- n+ia n) 
(39)

23n5 23n6 F 21n(_6n+ian)

p23n6 = + !n)-
23n ' P23 23n5 a 23n6

nn
(40)

T 2 4 (s) = 
a1F1 (S) (F+a 5s ) (a5 s 2+F 4 )

T 2 4 (o) T24 (-Y4) T24(-5)

P247 F2 1 7 (o) P244 F2 1 4 (-;4) ' P 2 4 5 - F2 1 5 (-)

T24 (_n+ian) f(41)

24n5 + iP24n6 = F2 1n(- n+ian) f24n = P24n6

P24n 24n5 a n 24n6

32



"(11) 2 -b4 _ i/2A -bin(a -F01() = 4 P014 Foi n  n e  s n a~oin+2 n )

n=1,2,3

2 -2 Poin- foinbnF oin f oin oin oin a
n

2 2
A = an + bn , sing =b/A1/2,

nn n n n n
a (42)

coSgn A I/

n

f. f.soin foinsingoin s1/2 cSgoin F 1/2
oin oin

or

F"1)= 2 e-b 4 F I1/ 2 A e -bnsina+g 2-
om(1) = b Pom4 e omn n nomn n

n=1,2,3

Im = 1,2,3,41

(43)

F -2 P omn- b= ; =omn n
omn omn omn omn an

A 2 si1/b/ 2  a anAn = an n ' n b n /An ' c°Sgn =

fomn fomn
singmn - F 1/2; C°Sgomn -F 1/2

omn Fomn

F (1) -b4+ 1/2 Al/2e-bncos(a +g )
om 4aom4 om n ang omn n

n=1,2,3 (44)

m = 1,2,3,4
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S i) 3 -b 112 3/2 cos
om 1) = b4Pom 4e -om n ( n+gomn

n=1,2,3 (45)

m = 1,2,3,4

S) 2 me- n F p1/2 jne -nsin(2n +2 n
MN =m PMNm MNn n n+G +2

m = 4,5 n-1,2,3,6 (46)

MN= 21,22,23,24,

S2 -2 2 2 - PMNn- fMNn~n
FMNn = fMNn +  MNn A n n n ' fMna n

(47)

SGf MNn fCOSn n

SinGn - 1 ; cSGMNn - 1/2; sinGn 1-/2 '

FMNn MNn n

cos n 1/
n

F IA(1) 3 e' -p/2 A 3/2 e - ncos(ct +G +3G
MN () mPMNme  MNn n n MNn+r

m=4,5 n=1,2,3,6 (48)

n = 1,2,3,6
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F F (1 F (1);

Fl1 =21 ( ; 1 2 = 22 1i;F3 F F23 1i;F4- F F24(I

F21 =  F 0 1 ( 1) F2 2  F 02(1) ; F23 F 03(1) ; F2 4 = -F0 4 (I)

F3 1 
= a1 F2 1 (1) + 5F01(1) 32 a1 F2 2 ()-a5F02() ;

F =aF (1)+

34 1 24 +a 5F 0 4(1)

-2 -2
a 5  l _a 5  -

41 = (a4 - ) F 0 1(1)-aBF 0 1(1) ; F 4 2  a 3F 0 2 (1)-(a4 - )F 0 2 ()
a1  a1

-2 -2

F- -(a4 -- F 0 3 (1); F 4 = (1)-a3F (1)
43 a3 034 0344 4- 04 3 04a1  a1

Determine eigenvalues that makes the following determinant zero

F11 F12 E13 14

F21 F22 F2 3  F2 4

= 0 (50)
F3 1  F32 F3 3  F3 4

F41 F42 F43 F44

Equation 50 is therefore expected to represent the closed-form ex-
pression for the divergence eigenvalues. Numerical methods are now
being uso( to .'acLt-hise eiaenvalues in order to obtain the
divergence sneeds.
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RESULTS

The results obtained so far seem to verify existing results and

establish new trends. Due to the fact that the evolution of

these new trends are yet to be fully completed, only a summary

of these results are oresented below.

The results obtained by solving equation 50 were carefully to

evolve the physical insiaht into the mechanism of divergence in-

stabilitv in the presence of warpina restraint and elastic couo-

ling. This study revealed the following, as can be seen from

Fiaures 1-6.

First, it is seen that the view held by many analysts that elas-

tic couolinq olays a significant role in aeroelastic divergence

tailorina is verified.

Second, it is seen that another view that, higher aeroelastic

divergence stability boundaries are feasible with negative elas-

tic couplina (than nositive elastic coupling), is basically true,

but un to a noint. It is further seen that there seems to be a

limit to how neaative the elastic coupling can be made to obtain

better stability boundaries - after such a limit, a further neaa-

tive increment of elastic coupling would seem to lower the stabil-

it,. boundaries.

Third, it is found that the effective aspect ratio defined in the

first phase of this research program ( c ), for simoler models can

still be used in this relatively more complex model, to measure
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the effect of waroinq restraint on the phenomenon of divergence

instability. The results show that ignoring the warping re-

straint would lead to conservative estimates for the diveraence

instability boundaries. It is also seen that the restraint of

warping effects are more significant for small effective aspect

ratio (. ) and/or large elastic coupling.

c
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5.3

Exact Solutions to Aeroelastic Oscillations of Composite Aircraft

Wings with Warping Constraint and Elastic Couplingt

Gabriel A. Oyibo and James Bentson
Polytechnic University
Farmingdale, New York

Abstract

Exact solutions within the framework of standard aeroelastic

bending and twisting assumptions are found to the free oscilla-

tions of composite aircraft wings having warping constraint and

elastic coupling. The problem is treated as a regular boundary

value problem consisting of two fourth order partial differen-

tial equations coupled by the presence of elastic coupling.

This system, which is linear, therefore is equivalent to an

eighth order ordinary differential equation . Classical linear

"operator" method is therefore used to extract fundamental solu-

tions which are superimposed appiopriately to obtain an exact

functional form for the mode shapes. These mode shapes are

therefore made to satisfy the necessary boundary conditions, a

process that leads to the formulation of the required eigenvalue

problem. The eigenvalues are extracted numerically by using ap-

propriate ordering of the eight roots of the operator equation.

The bending-torsion frequencies obtained as a result of this an-

alysis are compared favorably with existing results. New in-

sights made possible by these results which are preliminary, ap-

.

Research sponsored by the Air Force Office of Scientific Research

(AFOSR), under Contracts F49620-85-C-0090 and F49620-87-C-0046.

Associate Professor Dept. of Aerospace Engineering
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pear to be that (a) the first coupled frequency decreases with

increasing coupling and (b) the phenomenon of modal transforma-

tions found by earlier investigators is explainable in terms of

some conservative inter-modal energy transfer.
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5.3.1 NOMENCLATURE

ai  = chordwise integrals

Coc = affine space half-chord and chord, respectively

D.. = elastic constants

e = parameter that measures the location of the
reference axis relative to mid-chord

EI, GJ = bending and torsional stiffness, respectively

H = wing box depth

(h0 ,cc ) = affine space bending and torsional displacement,
respectively

K,So = elastic coupling and warping stiffness, respec-
tively

k.. = elemental stiffness parameter13

k = Strouhal numbero

L ,M0 = affine space running aerodynamic lift and mo-ments, respectively

k 0 = affine space half-span for the wing

m = affine space mass per unit span
0

(ApAp0 ) = differential aerodynamic pressure distributions
in physical and affine space, respectively

t = time

U,U0  = virtual work expressions in physical and affine
space, respectively

Uf = flutter speed

(x,y,z,), (XoYo ,zo) = physical and affine space coordinates, respec-
tively

iii = displacement shape functions

r,L I ,L 2 ,D * ,D *o ,  = generic nondimensionalized stiffness parameters

*o = affine mass ratio parameter

UijF = Poisson ratios and generalized Poisson's ratio,
respectively

X0 = divergence parameter

4-



C, = affine space material and air density, re-

spectively

- twisting displacements

w = displacement

= vibration frequency
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5.3.2

Introduction

Perhaps one of the more elusive aspects of supermaneuverabil-

ity as a design concept is its aeroelastic implications. One gen-

erally accepted definition of supermaneuverable aircraft is that io

is designed to operate at high angles of attack. Strictly speaking

high angle of attack problems are nonlinear. However due to the

high degree of complexities involved in dealing with nonlinear aero-

elastic problems,an average aeroelastician would prefer to deal with

a linearized version of the problem (at least as a first approxima-

tion). If linear aeroelastic equations are used under such condi-

tions, at least it should be assumed that the high angle of attack

would introduce large twisting displacements which would imply that

terms containing twisting displacement should be retained. Even

under low angle of attack assumptions, the early works of Reissner

and Stein and later works of Libescu et al 2 have shown that for

metal wings there are conditions under which the so called St. Ve-

nant's torsion principle is inapplicable. This is when the res-

traint of warping effect is important and a more accurate analysis

would need to include a higher order term involving the twisting

displacement. Although the retention of such a term implies solv-

ing fourth order (instead of second order) differential equations

for the twisting and bending displacements, the equations can be

easily decoupled for metal wings. However for composite wings, the

decoupling of these equations is neither easy practically nor is it
3-7

even desirable from aeroelastic tailoring standpoint. These stu-

dies have also shown that the restraint of warping is very important
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in composite winas. Thereft cr j t wo iid seeL that an aeroelastir,

analysis of a supermaneuverable (hich angle of attack) aircraft

wing fabricated of composite materials would need to consider

the effects of restraint of warping as well as elastic coup-

ling.

Previous investigation of this latter problem (free vibra-

tion) at MIT 3'4 used analytical methods to solve the decoupled

problem, while numerical methods were utilized to solve the cou-

pled problems. Consequently general results were presented for

the decoupled problem while representative results were presen-

ted for the coupled problem.

In this paper the coupled free vibration is treated analyti-

cally as a pair of coupled fourth order (differential equations)

boundary value problem to which exact closed form eigen-solutions

are sought. The enforcement of the necessary boundary conditions

resulted in a fairly complicated transcendental function to be

used to determine the required eingenvalues from which the natur-

al frequencies are to be obtained. This transcendental function

was complex in contrast to its decoupled counterpart (which is

real). That should be indicating the presence of the phase angle

that exists between the twisting and bending displacements. A com-

parison with a damped (decoupled) system in which complex determin-

ant signifies phase angles between damping and other forces, led us

to the formulation of an explanation for the "modal transformation"

phenomenon which was reported in studies at NIT
3,4 and Purdue 8 (which

seemed to have lacked explanation until this study). The explana-

tion is that the modal transformation may be viewed as a

form of steady state conservative (energy stays in this system
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since there is no dampinq;) inter-

modal energy transfer between the vibration modes. In fact

8
work currently in progress at Purdue seem to support and con-

firm this explanation. The results which favorably compared

with those obtained at MIT, 3'4 also revealed that coupling has

a tendency to lower the first coupled natural frequency of a

composite aircraft wing. In fact it is seen that a substantial

amount of coupling could reduce the first coupled frequency to

almost zero (hence a possibility of coupling with rigid body

modes).

5.3.3

Problem Statement

For a composite aircraft wing cantilevered at the root as

shown in Figure 1, the virtual work theorem in the physical

space is given by

t

o A

"D 22(w, yy) 2+ 4D 16 W'x x W'xy + 4D 26 W, yy()

" 4D (w, 2 dxdydt 50 A P 2 wdxdyd t

+466 (Wxy)ff

tff f Ap6w dxdydt
where: 0 A

D.. are the elastic constants, o, is the material density, Ap
1J

is the differential pressure distribution, w is the displacement,

t is the time, A integrals represent area integrals and h is the

wing box depth.

Using the following affine transformation of variables;

x D 1 1 1/4 xZ Z (2a)

Do 
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then in affine space the virtual work theorem becomes:

60 = 0 = 2 (w, x  2 + 2D* (l-c)(w, )

0 (wI

CW, , + (w, ) + LlW'x x w +

(2b)
+ L2w, w dxodyodt

2 OY yy OxY0 0 0

t t

7ff QoW 2 dXo t +fo ff oAp6wdx 0 0 t
0 A A

where

1/4

U0  * 22) ;/ D 12 + D66
D 22 (D 1 (D1 1 D2 2 ) 1/2

LD* D 12 L 4D1 6(DI11D 22) 12 (DII1) 3/4 (D 22) 1/4

(3)
4D2 6  A ;p_ P=

L2= 14 3/4 ; 0~ o = -
(D11) 1/(D 22 ) D22 D22

If the affine space equivalent of the standard aeroelastic

displacement assumptions is made, i.e.,

W(Xoyot) = h o(yot) + x o o(yot) .. (4)
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where h and , are the bending and twisting displacements re-

spectively, then it can be shown through the use of the calcu-

lus of variations that a coupled set of aeroelastic equations

of motion for the composite aircraft wing, in which the re-

straint of warping and elastic coupling effects are accounted

for is given by

iv iv -- a aii+ p + a .
0 0 5 0 0h2 0o

(5)
ah iv +_ h+ a41 // + P a a + P a 2ho

2 0 5 o 0 0 0 2

aty = 0

with boundary conditions

h 0, h' = O, a = 0, a' = 0 (6)
0 0 0

at y 0 2.
0

a x 11+ah- L a a' 0 0, a h" -a (x' + a t = 0
32 0l2o 2So10 2 o

aa - a5AO  0

a2 h + a c" + a - a cE =0
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where:

dx a2  S o0 x o

0 0

- = 0 xP2 dx 8 =2 C o Dx(-)dx

S JE " 0 0 a 5 e 2 (7)
0 0c

0

M0 = X 0 4 P0 dx0
fec

C

-e<<O ; CO 1-e

=) -:o () 2

For free vibrations, if a2 (through the geometric construction

of the wing) is made to be zero, equations 5 reduce to

iv -
a1 h0  - a 5cO0 + poalho = Lo

(8a)

aiv +aho- - act" + pact =M
3o 0o 4 oo o

with boundary conditions
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at y = 0,

h = 0, h' = 0, ao = 0, c= 0

0 0

at y =1

alh '= a c('= 0, alh - a5cV 0 (Sb)
lo So

0

aae"' + a h"' - a4< =0

It may be stated here that the restraint of warping effect is icp-

IV
resented by the product of a. and a3 while the elastic coupling

effect is represented by the a5 terms.

5.3.4

Methods of Solution

Two methods for solving equations 8 are examined in this pa-

per. These are (a) an 'exact closed form" approach and (b) a "semi-

exact closed form" approach. The exact closed form approach is de-

fined here as one in which explicit expressions are derived for

the eight roots of the eighth order operator equations represent-

ing equations 8a, and through the superimposition of fundamental

solutions corresponding to each of the eight operator roots, the

boundary conditions 8b are satisfied. The semi-exact closed form ap-

proach is the same as (a) except that the roots of the operator

equation are determined numerically through the usage of some

standard root extraction subroutines.

In either case, to solve for the operator roots of equation

8a, it may be rewritten in operator form as follows,

55



L h - L 2 o = 0 (9a)

L 2 ho + L3 O = 0 (9b)

where the operators Ln (n = 1,2,3) are given by

a 4  =a 33L 1 = al1 -4 alW2Po0 L 2 a 5 ---

DYo 0 Yo

4 2L3 =  3 a 32
L3 =a 3  44 a 2 2 Po (10)

Yo Y0

and h = h eiwto o

- iwt
a cc e

0 0

w is vibration frequency

Following the method used in Hilderbrand,9 if 11 and L2 are com-

mutative (i.e., L1L2 = L2 L1 ) or L2 and L3 are commutative (i.e.,

L2L3 = L3 L2 ) either ho or ao may be eliminated and equations 9 is

reduced to one eighth order operator equation in either ao or h

respectively. This can be accomplished by using L2 to operate on

9(a) and L1 to operate on 9(b) and subtracting 9(a) from 9(b) or

by using L3 to operate on 9(a) and L2 to operate on 9(b) and sub-

tracting 9(a) from 9(b). The result of such an operation in which

h is eliminated is given by
0
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4 3 2
(x + F 3x + F x + F x + Fo) 0 o = 0

2 2

where, F 3 =-16 1 , F2 =-k , F 1 = 8(kXC) 2 (11)
4

Fo =j 4 )'

0 i -X T -

It should be noted here that because the method of elimination of

is through a differential operator, superfluous solutions

are to be expected (e.g., operator equation 11 is eighth order

instead of fourth order). These superfluous solutions are

eliminated by enforcing some consistency conditions on the so-

lutions as described below. Based on equation 11, an appropriate

form for the exact-closed form (or complete) solution for the

mode shapes of the free vibration problem proposed in this paper,

which can also be made to satisfy the necessary boundary condi-

tions is given by,

h0 = A1 cosh~lYo + A2 sinh 1 yo + A3 cos 2yO +

A4 sinO2y° + A 5 cosh63yo + A6 sinhQ3yo+ (12(a))

A7 cos64yo + A 8 sin6 4yo

ao = B1 cos 1yo + B2 sinh~lYo + B3 cos8 2yo +

B4 sin 2y° + B5 cosh 3 y° + B6 sinh83yo + (12(b))

B7 cos64yo + B8 sin$ 4yo

where
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n = X/n n = 1,2,3,4 (13)

and xn can be obtained either from the numerical solution of

equation 11 or according to the method described in Abramo-

witz and Stegun, 1 0 as follows

Define

* A L2

xc= (9 /C / T k -/C D*-
Ac o ) o 0  0c 02 /o 02" (14)

P1 = 4(X4 + X4)-8/3Tc2x2 + -2
c c c c 17

(15)

1 2-2
P2 6 c(321 c c +

s1 = 2W kP1  + (2 P12 - 8P2 3)
(16)

S 2W (W p _ 8 3 1/2]1/3
S2 =2k IRPI-(k2PI2- 8P 3) 2

uI  S1 + S2  R -

-2 I

2 = - 2)- 2+ i 2

1 1 2 2
u3  (S+$ 2 ) - - i (
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2
-2 64X4 + u +

f 3 , =+ -81 _ 1

5,6 2- 2-)

f 3 ± /f32 - 4f5
x =
1,2 2

(19)

-f 4 /f4 24f6
3 ,4  4 2

where u. (i = 1,2,3) is the root that makes f3,4,5,6 all real.

5.3.5

Consistency Conditions

From equations 12(a) and 12(b) it is seen that there are six-

teen arbitrary integration constants as opposed to the expected

eight constants. The additional eight constants have been intro-

duced superfluously as a result of the differential operation

which was done in order to eliminate one of the dependent varia-

bles in the two coupled differential equations (equations 9). In

order to get rid of these superfluous solutions it is necessary to

enforce some consistency conditions. This may be accomplished by
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substituting equations 12(a) and 12(b) into one of the equations

9 and requiring the equation to be satisfied identically. This

procedure shall establish a set of explicit relationships be-

tween the constants A and B in which A can be determined inn n n

terms of B or vice-versa.
n

When the superfluous solutions are eliminated, equations 12

can now be used to satisfy the boundary conditions for this prob-

lem (equations 8b). Consequently the condition for nontrivial so-

lutions is enforced to obtain the transcendental functional ex-

pression for determining the eigenvalues of this problem.

5.3.6

Eigenvalues

The following steps and definitions are carried out in order

to obtain the transcendental functional expression for determining

the necessary eigenvalue (for this eighth order boundary value

problem) from which the coupled natural frequencies may be ob-

tained

Define

4 k2 2 1
n n2 n n n

n (20)

h n h

n 3  n 8 n

n 
+ n

nn

(21)
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h3+h2 14-h 2  h3-h 1

a1 5  + a1 7  a 3 5  h
h h2h1 h2 h1 h2

a hl1+h 4 a hl3- h 2 - a h 4- h2  (2

a3 7  + 2 a2 6  hha 2 8  h 2  (22)

h-h 3  h-h1 4

a4 6 = a4 8 -
h 2 -h 1  h2-h 1

F51 1 3 a31 5 sinh 1 +B2 3a3 5 sin 2 + 3 3sinh 3

33 3coh

F61 = 13 a2 6cosh 1 - 2 a4 6cosB 2 +a3 cosh 3

F7 1 = 13 a1 7sinhBi- 2 3a3 7 sin 2+ 4 3sin 4 (23)

= 33

F81 13 a2 8 coshB 1- 2 a 4 8 cos2- 4 3cos 4

F52 = hia 1 5sinhl-h2 a 35sin 2 -hisinh83

F62 = -ha 2 6coshB +ha 4 6 COS 2 h3 cosh 3
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F li 'a sinhi' +h'a sin h s672 1 17 1 2 37 nL 2 h 4s1 4

F82 = -h;a 2 8cosh 1 +h2a 4 8 cos 2 +hcos 4

F53 = -t1 a1 5 coshSl-t 2 a3 5coso 2+t 3coshO3

F63 t1 a2 6sinh l-t2 a4 6 sin 2+t 3sinh 3

F73 t1 a1 7 cosh 1+t2a3 7 cos2-t4cosB 4

(24)

F t ih i=tsn83 ta 2 8sinh 1-t 2a 4 8sin 2 -t4sin 4

F5 4 =t 1 a1 5 cosh 1 +t 2a35 cos 2-t 3 cosh 3

F64 = 1 a26 sinhB1+t 2 a4 6sina2-t3sinh 3

F74 E 1 a17 cos- t2 a3 7cos 2 +t4cos 4

F84 = -tla 2 8 sinh 1 +t2 a4 6 -in 2 +t 4sinO4
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F6 1F7 2-F 6 2 F7 1  F61 F82- F62 F81

57 F5 1F6 2-F52 F61 58 F51 F62-F 52 F61

(25)

F52F71-F51F72 F52 F81- F51 F82

67 F 51F62-F52F61 a6 8  F5 1 F6 2-F 5 2F6 1

Then, kn are given by the roots of

F= 5 3a5 7 +F6 3 a6 7 +F7 3) (F5 4 a5 8+F6 4a6 ,+F8 4 )-

(26)

(F5 4a5 7 +F 64 a6 7 +F 7 4 ) (F5 3 a5 8 +F 6 3a68 +F8 3 )=0

Equation 26 is therefore the exact closed form transcendental

functional expression from which the eigenvalues kn may be ex-

tracted. The coupled natural frequencies are related to these

eigenvalues by the following expression,

1/2-
n= n2 ( , Tc/ ) ... (27)
Un P 2 c c c

0

5.3.7

Computations

The extraction of the eigenvalues from the exact-closed form

transendental expression in equation 26 proved to be a very chal-

lenging computational exercise due mainly to its complex nature,

the existence of branch points, the necessity to order the opera-

tor roots appropriately and the existence of numerical noise.
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The characteristic roots foEr the equations of motion, x ,

were extracted in two different ways in order to assure accuracy:

one method was by using a Jenkins-Traub computational method from

the IMSL library. The second method was by using an exact-closed

form approach outlined in Abramowitz and Stegun. 10 When these

roots are being extracted numerically, they do not necessarily

come out in a continuous manner. Therefore a subroutine that re-

orders them so that they become continuous with respect to the

eigenvalue k is also employed. Once this reordering of thesen

roots is completed, the parameters needed for computing the trans-

cendental function, F, in equation 26 are computed. Finally, the

transcendental expression itself is computed and the roots, kni

are found numerically.

One interesting result is that the values of F are complex

here. It is known, however, that each of the two uncoupled prob-

lems (bending or torsion) when treated separately has a real

transcendental expression for extracting the eigenvalues. This be-

havior of the transcendental expression for extracting the coupled

eigenvalues (i.e., being complex as opposed to being real) was the

first hint that led the first author to examine any possible math-

ematical similarity between the problem at hand (a coupled non-

damped oscillations problem) and simple damped oscillations prob-

lem in which the expression for determining the eigenvalues is in

general complex due to the need to determine the oscillation fre-

quency and the amount of damping in the mode, etc. In the coupled

problem the complex nature of this transcendental expression for

extracting the eigenvalues seems to be basically a reflection of
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the phase that normally should cxist between the bending and tor-

sional modes. Realizing that in the damped case, there is a non-

conservative energy transfer between the oscillating system and

its environment as well as intermodal energy transfer, it became

clear to the first author that in the undamped coupled system

there may be a conservative energy transfer in the oscillating

system. At the time of this thought it seemed to the first auth-

or that if it made sense, the idea should provide an explanation

for the modal changes which were noticed during the studies at

Purdue and MIT as coupling in the system was changed. This

prediction which turns out to be useful and confirmed by other

8recent studies from Purdue University shall be discussed in more

detail below.

The most convenient way to obtain the eigenvalues, kn' was

found to be by graphical means. Thus the values of the real and

imaginary parts of the complex transcendental function T are

plotted against the values of k1 on the same curve as shown in

Figure 2. The values of kn at which the real and imaginary parts

of the transcendental function are simultaneously equal to zero

corresponds to the desired eigenvalues for this coupled problem.

One of the problems with the computational model described

above is that, when the coupling parameter, L2, becomes identical-

ly zero, the coupled system of equations becomes computationally

ill conditioned and unsolvable. To circumvent this the results

for the uncoupled case (Xc/X c = 1) are obtained from a series of

calculations using successively sm "ler values for the coupling

parameter, L This led us to accept the values of eigenvalues
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for zero coupling as the value corresponding to the limit as the

coupling approaches zero. Although this continuity assumption

seems to make sense, it is not backed by a rigorous mathematical

proof. Luckily it was possible to check these results with re-

sults generated for an isotropic/metal aluminum/wing by MIT,
3'4

and the agreement was found to be good for the cases checked.

5.3.8
Results and Discussions

The natural frequencies w for the coupled bending-torsionn

oscillations for a composite aircraft wing in the presence of

elastic coupling and warping restraint is found (as shown by

1/2
equation 27) to be a function of the ratio (D2 2 /p) , the length

Z and the nondimensionalized frequency parameter k for the

wing. In this problem, kn, is a function of only two parameters,

i.e., X which may be considered as an effective nondimensional-c

ized aspect ratio and c /X c, which in a way, measures the amount

of elastic coupling in the wing (c /A = 1 for zero coupling)

It is therefore seen from equation 27 that in order to increase

W n one needs to make k as small as possible and/or make (D2 2/0)

and k as large as possible. Such an exercise may be necessaryn

when a tailoring of the frequency is needed to avoid instabili-

ties (e.g., very low structural frequencies may provide an atmos-

phere for a coupling between the flexible modes and rigid body

motions, which in turn has a potential to result in instability).

Tnis kind of tailoring is made convenient through the use of equa-

tion 27 in which, for a particular wing configuration and compos-

ite mAterial, every variable in the equation shall be known ex-
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cept kn and D 22• Obviously if we want high wn' as we said earli-

er, D22 should be made to be as high as possible (and of course p

as low as possible). Once this is done the only other parameter

to be tailored is k
n

The plot of k1 as a function of Xc and Xc is shown in Figure

3 for all configurations having low camber to twisting coupling,

and all values of bending to twisting coupling. The results com-

3,4
puted at MIT, which were used to verify the present results,

are shown in Figure 3 as well. The important trend made visible

is this investigation as shown in Figure 3, is that k1 (and hence

w1 ) decreases with increasing nondimensionalized coupling L2,

which perhaps may be a more effective way to actually measure and

compare elastic couplings, D1 6 and D2 6. For example, the results

from MIT 3'4 which were computed for some representative configura-

tions, in dimensionalized form seem to represent systems with a

fairly significant variation in coupling D2 6 or D1 6 (depending on

the coordinate system). However when nondimensionalized, the re-

sults as shown in Figure 3 seem to show little variation in coup-

ling. in fact they appear to be so close to the zero coupling

case (Xc /c = 1) or isotropic (or metal) case, that k1 for a metal

or isotropic wing should be a good approximation (if it was nec-

essary to make an approximation). The low value for the effective

coupling was also evident in the nondimensionalized results from

MIT 3 ,4 where the bending frequency hardly varied with material

changes. The question that could be asked is therefore "Do all

possible composite wing configurations result in very low effective

nordimensionalized coupling, (A c/A cl)?'' If the answer is "yes",
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then it may be proposed that for .''5, k1 (cAc / c) may be ap-

proximated as k (X, ,l), which is also the isotropic or metal

value. For this case it is seen that the computation of the na-

tural frequencies of composite aircraft wing having aeroelastic

oscillations, merely requires the computation of (D2 2 /p) for a

given wing half span Zo' since kn (A cc /X c ) is approximately

equal to kn (X cl) which is approximately equal to a constant

(3.5) for n = 1. This result should make frequency computations

for the bending mode significantly easier.

The proble~a with an affirmative answer which may likely be

a "practical" answer, to the question posed above, is that there

doesn't seem to be a theoretical or rigorous analytical reason

(to the best of the authors' knowledge) why Xc/Xc must always be

approximately 1. Therefore, if on the other hand, the answer to

our question is negative, then the following observations may be

made: (a) significant variation in k is possible with variations

in effective nondimensionalized coupling (X c/c) . In fact it can

be seen from Figure 3 that if Xc/Xc approaches zero, k1 (and hence

w1 ) approaches zero. (b) The values of k1 vary significantly with

Ac for low Xc but approach asymptotic values for large Xc -

(c) The highest values of k is for isotropic (metals) or quasi-

isotropic configurations. (d) For large values of XI, there ap-

pears to be a simple approximate (hopefully linear relationship)

between k and X /A (or a measure of coupling). (e) For very
1 ~ c

large coupling (Xc/A c -0 )' k1 approaches zero, which may provide

the ingredient necessary for coupling between the elastic and ri-

gid motions.
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Perhaps a number of implications of some of these observatin ls

should be examined: Observation (c) seems to imply that the high-

est first frequency would correspond to isotropic or quasi-isotrop-

ic configurations if (D2 2 /p) and Zo are the same. It is known how-

ever the metals have lower values of(D 2 2 /P) than composites. It

therefore means that quasi-isotropic or orthotropic configurations

are desirable for such a design goal. Observation (e) would seem

to imply that if a designer, interested in tailoring the wing fre-

quencies, arbitrarily introduces large effective nondimensionalized

coupling (Xc/ c-0), then k1 (and hence wl) would approach zero.

This may result in coupling between flexible and rigid motions

which may or may not lead to instabilities. Could this have hap-

pened in the case of the X-29 Forward Swept Composite Wing Aircraft

for which one of the primary modesof instability results from the

coupling between flexible and rigid body motions? In other words

was "too much" coupling (effective) inadvertently built into the

wing during the design process? If that is the case, is there an

alternative, equivalent design without any penalties (weight or

otherwise) that could have been explored? Although the answers to

these questions can, strictly speaking, only be possible after car-

rying the necessary aeroelastic analysis in which unsteady aerody-

namic forces are considered, it appears from Figure 3 that a rough

idea of the final picture may be obtained from the natural fre-

quency analysis. Afterall, it is a common belief that the phenom-

ena that actually lead to aeroelastic instabilities are linked to

damping and coupling.
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5.3.9

Modal Transformation

Earlier in this paper it was mentioned that previous studies

by other investigators have found what appeared to be some kind

of modal transformations as ply orientation was changed in a de-

sign process for a composite wing. While variation in ply orien-

tation may change several directional stiffness parameters for

the wing, the coupling stiffness parameter, L2, may be singled

out Ls a significant design parameter, because it may vary con-

siderably (orthotropic configurations have zero values while it

may be fairly significant in other configurations). Furthermore

it should be remembered that the main reason for ply orientation

variation is for 'tailoring', which is believed to be primarily

tied to couplings (D1 6 and D 2 6 ). The absence (or the presence)

of these couplings is basically what differentiates orthotropic

configurations from anisotropic configurations. From these ob-

servations, and the fact that the entity that ties the bending

and torsional equations is the coupling, it became clear that

the role of coupling in modal transformations should be signifi-

cant.

In order to see the role of coupling therefore in this stu-

dy, the modal assumptions for the coupled problem were made sim-

ilar to those normally made for the uncoupled problem (e.g., the

frequency was assumed to be real) so as to provide an opportun-

ity to compare, contrast and discern the final results easily.

When this was done and the eigen-problem was formulated result-

ing in a complex transcendental expression from which the eigen-

value are to be extracted, a careful examination began.

A significant difference between the coupled and uncoupled
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problems was that (as shown in Figure 2) the transcendental ex-

pression from which the eigenvalues are extracted is complex for

the coupled problem while it is real for uncoupled problems.

The complex nature of this transcendental expression basically

reflects the fact that the bending and twisting oscillations are

generally out of phase. Therefore the resultant coupled frequen-

cy that represents both the bending and twisting oscillation may

be viewed as some kind of vector representation of the individual

contributions. In order to formulate some explanations for the

phenomenon of modal transformation in coupled (conservative) sys-

tem, it may be necessary to compare and contrast coupled systems

with damped systems. Damped systems, by definition are noncon-

servative, i.e., the system experiences a net loss or gain in en-

ergy. It is well known that in a damped system the transcenden-

tal expression for extracting the eigenvalues is complex, again,

due to the phase angle that exists between the damping force and

the conservative forces in the system. It is also known that

some damping (desirable types) would tend to reduce the oscilla-

tion of the system (the non-desirable type tend to make the oscil-

lations diverge). Therefore since damping is linked to some ener-

gy transfer which in turn tend to lead to a change in the oscilla-

tion frequencies, it was thought that the complex nature which is

common to the coupled and damped system determinants (transcenden-

tal functions) from which the eigenvalues are extracted may be a

similarity that may provide some explanations to the modal trans-

formations in coupled systems. Using the similarity argument, the

coupled system which for the present problem, is conservative, may
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be viewed as having some conservative inter-modal energy trans-

fer within the system when the coupling is changed, resulting

in steady state changes or transformations of the modal energy

content of a coupled mode compared to the uncoupled case. It

may be worthwhile to point out that some results recently ob-

tained at Purdue University 8 and communicated to the authors

seem to strongly support this hypothesis.

5.3.10

Empirical Relations

A careful study of Figure 3 has led the authors to propose

the following closed form asymptotic relationship that may be

useful for some preliminary design consideration:

I= 3.5 (X/ C) X >3.0 (28)

Equation 28 was derived from Figure 4. Equation 28 as well as

equation 27 show that the first coupled frequency decreases with

increasing coupling, a trend that seems to be supported by new

results from Purdue University8 and the data from MIT.3 In ref-

erence 3 for example, the first nondimensionalized frequency com-

puted by Raleigh-Ritz (in which coupling is zero) had a value of

3.52, which is consistently higher than those computed by finite

element method in which coupling is finite (not equal to zero).

Equations 27 and 29 which are closed form (generally rare for an-

istropic systems) should be easy to use.



Before this discussion is concluded, it is probably necess-

ary to explain why only the results of the first mode are shown

in this paper. First of all it should-be pointed out that some

second mode data have been generated but are still being studied

very critically to understand the general trends. It may also

be pointed out that the extraction of the eigenvalues is a little

challenging since some care is needed in ordering the roots of

the operator equations.

5.3.11

Concluding Remarks

This paper has attempted to present exact closed form solu-

tions to the coupled bending-torison vibration problem for a

simplified model of composite aircraft wings with war ping con-

straint. Increasing the coupling was found to decrease the first

coupled frequency. A comparison between the coupled problem and

a sample damped problem led the authors to propose some explana-

tion to the "modal transformation" phenomenon found by earlier in-

vestigators. Some simplified closed form expressions are provi-

ded for the first coupled frequencies which may be useful for fast

applications.
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Figure 1: A Laminated Plate Model of a

Composite Aircraft Wing
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5.4

VIBRATION TAILORING

T. A. Weisshaar
Purdue University

West Lafayette, Indiana

5.4

1. Introduction

The analytical study of free vibration of a multi-degree-freedom system

presents itself in the form of an eigenvalue problem, in which the eigenvalues

yield the natural frequencies and the corresponding eigenvectors are the mode

shapes. Together the natural frequencies and the mode shapes constitute the

"fingerprints" that, uniquely characterize a dynamic system. Moreover, the

solu ion of a forced vibration problem relies predominantly upon the

technique based on modal series expansion which, as implied by the name,

requires the determination of eigenvalues and modal vectors. Indeed, the

forced response is obtained as a superposition of the system's normal modes,

each one of them being multiplied by a time-dependent generalized

coordinate. In the area of dynamic aeroelasticity, the knowledge of natural

modes is also essential. The modal matrix formed by columns of eigenvectors

is used as a transformation matrix to reduce the number of degrees of

freedom in the flutter analysis. By modifying the mode shapes of a system

through aeroelastic tailoring, the flutter margin can be changed for better or

for worse. It is therefore instructive to examine the influence of the tailoring
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parameters upon the vibration modes. In previous work tailoring parameterc

were suggested nondirnensioned in terms of combinations of the plate bending

stiffnesses. When these parameters are varied within the constraint of their

applicable bounds, the natural frequencies and mode shapes change. The

magnitude and extent of these changes arc the subject of this chapter.

5.4

2. Effect of Cross Stiffnesses on the Natural Frequencies

To illustrate and to discern the probable extent of the influence of

dirnensio!. - parameters on plate natural frequencies, a cantilevered,

rectangular, fiat plate of differing aspect ratios was chosen for the study. The

geometry of the plate is shown in Figure 1. The deformation of this

planform is modelled by classical plate theory using the Rayleigh-Ritz

method. For this part of the tailoring work, the assumed displacement

function is a polynomial in x and y coordinates, i.e.

x--1 1-1
w(x,y) N '\ a x y form, n ,

If both the integers m and n take on the same value, say 4, then the

displacement function is said to be biquartic (similarly, bihextal for

in =n = 6, bioctal for m = n =8, etc...). For the plate in Figure 1, it has

one chordwise edge built-in and the rest of edges free. The geometric

boundary conditions (displacement and slope) are enforced along y- 0, and

the displacement function is reduced to

• , i , i II I I I



mr-I n+l Jm =
w(x,y) = N' a., x y-1 for (2)

1=-I j-
3

The advantage in using polynomials versus beam mode shape functions lies in

the relative ease of integration over the trapezoidal planform for which a

rectangle is a special case. For the particular planform of interest, the largest

exponent order in chordwise displacement (x-direction) is qradratic, i.e.

m = 2. This provides for a chordwise curvature or camber effect with a

parabolic shape. The largest spanwise order (y-e" ,-tion) is quartic, i.e.

n = 4. This arrangement of terms is made for two reasons. First, the plate is

supported along v = 0, thus restricting the freedom in chordwise distorsion.

Secondly, the fewer number of terms included in the assumed displacement

allows greater computational efficiency. Another case study discussed later

will show that no significant loss of numerical accuracy is entailed by using al

approximation of these orders.

Now applying Eqn (2) to Ritz analysis which seeks a stationary solution

to the variational condition on the energy expression

6(V-T) =(V-T) =0 (3)Dgaij

where V and T are respectively the strain and kinetic energies of the flexural

laminated plate, and are written as follows:
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Returning to our discussion, Figures 2 through 9 display the non-

dimensionalized frequency associated with the first four modes plotted against

the cross-stiffness tailoring parameters, , ,2 and -;. The specimen considered

is the aforementioned cantilevered rectangular planform with varying aspect

ratios (Figure 1). The reference frequency used for the non-

diinensionalization, denoted as wref (where i= 1,2,3,4), corresponds to that

which would be computed with zero cross-stiffness at each aspect ratio and

each ith mode. Note that the parameters ( , tf2 and ' measure, respectively,

0" degree of camber/twist, bend/twist and camber/bend interaction prcsent.

In every figure, one of these parameters is changing, while the other two are

kept constant. Care was exercised to vary the tailoring parameters within

their allowable ranges. In addition to the relation which defines the

parameter's upper and lower bounds, another constraint was also satisfie

Noncompliance with these constraints would not cause computational troubles

in most cases, but it would deprive the analysis of any physical

meaningfulness.

Observing the figures, one can discern the general trend that, for small

values of the tailoring parameters (e.g. below 0.3 - 0.4), stiffness cross-

coupling has little influence on the natural frequencies. As the parameters

approach their bounds, then the dependence of the frequencies on the

coupling is extremely evident for most cases. Frequencies generally decline

significantly as the couplings accentuate their effects, although there are

several instances showing opposite behavior to this trend. In the cases where

frequencies do increase with stronger couplings, the magnitude of the increase

is not as substantial as that of the decrease with larger couplings. Compared
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to previous investigations by Weisshaar, frequencies of a beam model were

found to be relatively unaffected in small couplings, but decline when V'

attains high values. Furthermore, in Figures 2 and 3, one does not

observe any symmetry of the frequency curves with respect to i!, = 0.

However slightly distorted, this symmetry begins to take shape when t',2 and

are variables, as depicted in Figures 4 through 7. When one of the elastic

couplings is removed, such as camber/twist interaction in Figures 8 and 9,

then the frequency cu: rve symmetry with respect to L', = 0 is perfect. Finally,

as seen in the pattern of variations, no I --rvation can be drawn on the

influence of the aspect ratios.

5.4.3

3. Effect of Cross Stiffnesses on the Mode Shapes

Of key interest to an aeroelastician is the effect of structural

deformations of a lifting surface upon the aerodynamic loads. In the dynamic

environment, the surface deformations associated with the mode shapes exert

a strong bearing on the flutter stability. Hence, tailoring for desirable modal

shapes is a passive flutter prevention technique. The most significant

alteration of a mode shape is the repositioning of nodal line contours. A

nodal line is a locus of zero displacement present on the structure when that

structure vibrates at a particular natural frequency. Biot and Arnold

reported computations wherein zero airspeed flutter occurs for a two-

dimensional airfoil when a node (point in this case) is located at the 3/4 chord

position aft of the leading edge. They also stated that in a vortex-free flow,

i.e. flow without circulation, flutter occurs at all airspeeds when a node

coincides with the 3/4 chord position. In this latter case, frequency merging
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takes place, and the ratio of pure bending to pure torsion frequencies is nearly

unity. The authors concluded that, in designing an airfoil, it is recommended

to place the nodal lines as far away as possible from the 3/4 chord "danger

zone". This is an illustration of the importance of mode shapes to flutter

occurrence.

The potential for modifying mode shapes through stiffness cross-coupling

is illustrated in Figures 10 through 12. In these figures, the modes are

represented in terms of nodal lines. Using the same specimen, nodal lines for

the first six mo' - of the fixed-aspect-ratio planform are reproduced for a

number of values of '1 and '2. These nodal lines are generated from the

Rayleigh-Ritz analysis. In each of the figures, two of the three cross-coupling

parameters i'1, &'2 and , are held constant, while the third ranges within the

constraints imposed. Note that the spanwise length of the rectangular

planform has been scaled down, so that displacement data in one mode shape

are displayed on one computer output page. Two comments are in order. The

different modes are not symmetric with respect to 4' =-0.0 in Figure 10.

However, in the following two figures where V,2 is varying, modal symmetry is

clearly discernible. As a matter of fact, this symmetry appears perfect in

Figure 12 where, again, the camber-twist modes are decoupled. The above

situation is consistent - th that observed for the frequency curves. Based on

the observations made, one can therefore infer that the camber/twist

interaction can behave very differently when the sign of the elastic coupling

changes. This is in sharp contrast to the other two types of couplings.

As the second comment, a reordering of the modes occurs between, for

instance, the second and third modes in Figure 10. The reordering occurs
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when 01 changes its value from 0.6 to 0.8. At 0, = 0.6, the second mode is

predominently a second bending mode, while the third mode is predominently

a first torsion mode. At V,,, = 0.8, the second mode becomes predominently a

first torsion mode, while the third mode predominently a second bending

imode. This change in modal identification is sometimes referred to as a

modal exchange or modal transfer. The tendency for the two modes in

question to interchange their order can also be seen in the extreme negative

range of &; in Figure 10. In Figure 11 and 12, modal exchange involves

the fourth and fifth modes as 4,2 increases. In all the exarn"',- cited, modal

exchange occurs as the result of changes in one of the cross-stiffnesses (ik 1 or

L2). This is important to dynamic behavior because, while the modal

frequency is relatively unaffected by changes in these parameters, the modal

forces (also called generalized forces), that arise as a result of deformation in

that mode, may be affected significantly.

The need now arises to analyze and to explain the phenomenon of modal

transfer in a more quantitative manner. Oyibo in a study funded by

AFOSR Contract F49620-85-C-0090, first proposed that this phe-

nomenon can be explained in terms of inter-modal energy trans-

fer. In the next sections an independent approach shall be

used to try to verify Oyibo's theoretical explanation.

5.4.4

4. Modal Content Analysis

For a vibrating anisotropic plate, the mode shapes are com-

posed of a number of intricately coupled fundamental shapes.

As a result of the presence of cross-coupling, the distinct ca-

tegorization of coupled modes as pure bending or pure torsion

modes is not possible. A previous work discusses the idea of

expression of mode shapes for a cross-coupled structure in

terms of a set of modes qenerated from a baseline configuration.
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This decomposition may

be accomplished in terms of so-called modal participation factors as explained

in the following discussion.

Consider the equation of motion for free vibration of a special plate,

called the baseline structure. This baseline structure has no stiffness cross-

coupling between the bending and torsion modes (i.e. ' = l."2 = 0). The

equation is written as:

- 2 [M.] {0} (7)

where MJ and [Ko are, respectixlt. , the mass and stiffness matrices of the

elastically uncoupled system. The solution to the above eigenvalue problem

provides the modal vectors {77(i)} of the elastically uncoupled system. The full

modal matrix jr)J, a square matrix, can be constructed by assembling columns

of eigenvectors {07 (i)} in ascending order of the natural frequencies. Consider

now a plate with nonzero cross-couplings. Let [Kj be the portion of the

stiffness matrix due to the effects of rotating the ply angle to create 'iffness

cross-coupling. This matrix may be added to the uncoupled portion [K.1 of

the baseline structure. As a result, we encounter a new eigenvalue problem,

for which ,j and V"2 are nonzero, as follows:

--. [Moj f{} + [K,+Kl {} = {J} (8)

The eigenvalues and eigenvectors of the free-vibration problem, Eqn (5.7), are

different than those found in Eqn (8) because of the modified stiffnesses. A

coordinate transformation using [77J may be performed to obtain the foltowing

87



approximation for the new modal vectors {} of the elastically coupled

system:

ICA [III 1 '' k (9)

The Ith element of IP(J) , denoted as P,' is the contribution of the ith

uncoupled mode ( to the jth coupled mode {(b}}. Thus we see that the jth

modal vector of the coupled structure, { (i)}, is a linear combination of the

modal vectors of the uncoupled baseline structure, the coefficients in the

combination being the elements of {P(J)}. This vector is called the moda

content vector. Now inserting Eqn (9) into Eqn (8) , premultiplying

throughout by 1 17T, and normalizing the modal amplitude so that the

following two relationships hold:

!771T IMo1 j71 = I1 (10)

[Tj~ r'K(j !ill } 11

where [I is the identity matrix and ['woJj a diagonal matrix whose nonzero

elements are the natural frequencies of the baseline structure. We now find

that Eqn (8) becomes

_ 32 {p(j)} + -o2 ] {p(j)} + [ijT f [K7] {P(i)} = {0} (12)

If we further define
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;, IK) l = 1T ) ( 13)

then we can rewrite Eqn (12) as

.2 jebj} + 52 {p(j) + Ikj {p(j) } ( 14)

To determine the elements of the modal content vector {p(J)} associated with

the jth coupled mode, we begin first by solving Eqn (7) ,finding :' 2 and {71}

for all uncoupled modes. Next %2 of jth coupled mode is determined from the

eigenvalue problem, Eqn (8) Finally the vect, . 2(J)}, which is itself an

eigenvector of Eqn (12) , can be calculated from the system of homogeneous

equations, Eqn (12) if one of its elements is arbitrarily chosen. There is,

however, a more convenient way to obtain {P(j)}. Solving for all the modal

vectors {r/()} (where i = 1,2,...,n) and the jth mode { ()} of Eqns (7) and

(5.8) respectively, premultiplying Eqn (9) by I77T [M.1 and normalizing in

accordance with Eqn (10) we get

{p(j)} = [r/iT [Mol {&j (15)

If we normalize {P(J)} by dividing its elements by the largest absolute value in

{p(i)}, then we get the relative contribution of each mode {r(0)} to make up

the content of each { )}. Using the above technique to determine modal

content, we can pinpoint those modes that may be important to the flutter

analysis.



The modal content vector {P(J)} can also be applied to the energy

approach of the vibration problem. Consider once more the elastically coupled

free vibration equation:

- 24 M,! {JC + [K.+K {(i)} = {0} (8)

Substituting Eqn (9) the relationship between the uncoupled and coupled

eigenvectors - into Eqn (8) and proceeding as before, we obtain Eqn (12)

Then, premultiplying Eqn (12) throughout by the row vector 1P(J)j, we get

.2 p) p(J) , - P(j)j {p(J)} + yP(j)j jk {p(J)} = {O} (16)

At this point, we can form the Rayleigh's quotient from Eqn (16) as follows:

2 _ pj ) - {pC)} P)) {pi)} ( 17

j - p (j)] {P (A)}

By adopting the notation

P (~) iP1(6)  iPlj

{P(J)} -- P:J I (18)
pn(j P P.2j

we can rewrite Eqn (17) in summation form. i.e.
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1n 1n fl

2 2P 2~o j + v K ik PijPkj
2 t-I 1= k- 1 (19)

r i 2nL p 2

I=1

For the jtb mode of the elastically coupled system, the numerator in Eqn

119) represents the strain energy. The first term can be viewed as the

primary strain energy of the baseline structure, while the second term is

interpreted as the strain energy due to stiffness cross-coupling. The

denominator represents a measure of the kinetic energy.

In the previous section, we observed the phenomenon of modal transfer.

To examine this phenomenon from an energy viewpoint, we focus our

attention on the kinetic energy expression P 2 . First we define each
i=1

element Pij 2 of T2! matrix as the contribution of the kinetic energy of the ith

uncoupled mode of the baseline structure to the total kinetic energy of the j'h

mode of the coupled structure. To facilitate further the numerical

interpretation of P,,2 , each ith element of the jth column of [p2] is divided by

the sum of the elements in that column. As a result, we get the sum

V Pj2 1 for the jth column and obtain a normalized energy contribution of
i=1

each ith uncoupled mode to that of the jth coupled mode.

As an illustrative example, a cantilevered laminate of rectangular

planform with the stacking sequence 102/o1, was chosen. The plies are of equal

thickness; the ply orientation 0 is measured from the longitudinal axis and

takes on values from 0 to 90 degrees. The baseline structure is defined as

02/OS, it is orthotropic (D1 = 26 = 0) and elastically uncoupled. There are
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0.9 0.01 0 0 0 0 0 0 0
0.01 0.49 0.49 0 0 0 0 0 0

0 0.49 0.48 0.03 0 0 0 0 0

y2] 0 0.01 0.02 0.83 0.11 0 0.02 0.01 0
F -P 21 " = 0 0 0 0.09 0.68 0.20 0 0.02 0 20)

0 0 0 0.04 0.02 0.28 0.62 0.04 0
0 0 0 0.01 0.01 0.14 0.23 0.61 0
0 0 0 0 0.17 0.35 0.12 0.29 0.06
0 0 0 0 0.01 0.01 0 0.04 0.94

As 0 increases further, the bending kinetic energy begins to predominate.

while the torsional kinetic energy gradually declines. Finally, near & = 65

mode 2 bect :,.:, a nearly pure flexural mode (P 3
2 = 1). Similar commnts can

be made with respect to mode 3 in Figure 14 where it is the second pure

bending mode at 0 = 0 (P 33
2 = 1) and transmutes into the first pure torsion

mode at 0 = 65' (P 23
2 = 1). Thus, through an evolutionary process which

consists of changing gradually the stiffness characteristics, we observe a

reciprocal switch or exchange of modal character, and in the context of

kinetic energy, this modal exchange is rendered possible by an exchange of

modal kinetic energies.

For higher modes, say {(4)} and { (5)}, the deformation pattern is more

complex. As a result, there are a larger number of uncoupled modes

participating in the motion of the coupled system. Hence, modal content is

more distributed, as is depicted in Figures 16 and 17. A further remark is

in order here. The fact that the coupled modes { 2)} and { 3)} involve only

the interaction of first torsion and second bending is well demonstrated by the

equalities P 3 2
2  P 23

2 and P 2 2
2 = P 33

2 in Figures 13 and 14. Such

equalities do not exist in Figures 16 and 17. For {W4)}, there are three

modes of the baseline structure that are coupled together when 0 j 0' , while
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two reasons for selecting this particular laminate: (a) the layup is unbalanced,

hence it has a greater inherent coupling of deformations as compared to the

balanced counterpart; (b) the dynamic behavior of this particular laminate

has been documented previously by Jensen, et al. [MIT]. This permits

correlation of our study to established results. Another advantage to using

this unbalanced laminate is that modes 2 and 3 involve only an interplay

between the first torsion and second bending behavior of the baseline

structure. The number of terms considered in Eqn (2) were again set to

m = 2 and n = 4, resulting in a nine-(- -. e-of-freedom system (see Eqn (2) ).

These orders of the exponent yield numerical results in satisfactory agreement

with those obtained experimentally by Jensen; this is demonstrated in Figure

iP to be commented shortly. Now referring to Figure 13 and starting at

H= 0 mode 2 is observed as having all the kinetic energy of the pure first

torsion mode (P22
2 = 1 at 9 = 0") there is no contribution of the kinetic

energy from the second bending mode (P32
2 = 0 at 9 = 0*). The nodal line

patterns at 0 = 0 o are sketched in Figure 15 along with those corresponding

to other ply angles.

In Figure 13, it is noted that, as 0 is increased, mode 2 becomes more

coupled; there occurs a gradual decrease of the torsional modal kinetic energy

P 22
2 with the corresponding increase of the bending modal kinetic energy P32

2 .

At about 9 = 21.5*, the modal energy curves cross each other, and mode 2

has 49% of first torsional energy and another 41% of second bending energy,

the remainder being contributed by other fundamental modes. For purpose of

illustration of the modal energy distribution, the normalized kinetic energy

matrix for 9 = 21.5 * is shown as follows:
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for , there are four modes. Because of the same number and type of

fundamental modes participating in the motion, the crossings of the energy

curves in Figures 13 and 14 occur at the same angle 0 and indicate the

occurrence of a modal transfer. If the modal participation is different, as it is

the case in Figures 16 and 17, then the crossings of the energy curves do

not take place at the same angle 6, however they still suggest the occurrence

of modal transfer somewhere in the vicinity of the crossing angles P.

We now turn attention to the behavior of the natural frequencies as the

plies rotate. Of interest in Figure 18 is the tendency the frequencies of

the second and third modes to approach each other in the neighborhood of

P = 21.5 . However the frequency curves do not cross each other and are

observed never to do so. This non-crossing behavior of the frequency curves is

even more dramatically illustrated by Ritchie, et al. and Weisshaar, et al.

Tn particular, Ritchie mentions a so-called "non-crossing rule" in

conjunction with the frequency curves. R.tchie states that the non-

crossing rule forbids the tuning of coupled oscillators, whether mechanical or

electrical, to the same frequency. Although efforts were made by the present

author to find all the stipulations, if any, associated with this rule, the search

has revealed only that the term "non-crossing rule" is well established in

physics. Specifically, it refers to the non-crossing of electrical potential versus

internuclear distance in the context of two electronic states. However we

are unable so far to relate this rule with either mechanical or electrical

oscillators found in the literature. It appears that Ritchie used the

terminology in a very loose manner and that, in lieu of a rule, he really meant

the "non-crossing behavior".
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On the other hand, if we compute the natural frequencies of the

structure versus the fiber orientation (see_ Figure 19), but only take into

account values of D11, D12, Dq2 and D6, and disregard D16 and D26, then the

frequency curves of second and third modes do cross at t0 = 21.5< . Although

such a system is uncoupled, it is not the baseline structure defined earier.

Instead, the present configuration refers to the structure that is always

elastically uncoupled by intentionally setting D 16 = D = = 0, or i.j = t.2--0

for all 's. For the baseline structure we have Dj 6 = D26 = 0 only for 8 = 0.

In Figure 19, the crossing c- ' - uncoupled frequency curves indicates that a

modal transfer or reordering takes place. The same can be said with respect

to Figure 20 where the double crossings between the fourth and fifth modes

suggest two modal transfers. An examination of the nodal patterns confirms

the above remark.

In summary, we can draw several conclusions, based on the above

discussion:

i. Modal transfer of an elastically-coupled laminated plate can be viewed

and charted by examining baseline modal kinetic energies; as first pro-
posed by Oyibo [AFOSR Contract F49620-85-C-0090*].

ii. The frequency curves of two modes plotted against ply angle can

approach each other, but appear never to cross each other as evidenced

by a number of plots of natural frequency versus ply angle;

iii. The ply angle at which modal transfer occurs can be deduced by the

crossing of the plots of frequency versus ply angle of the elastically

uncoupled system (D18 = D26 = 0 for all O's).
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Graphi te/Epoxy

Laminate: [90/135/45/180]

D 1 79.04 Ib-in Density: p = 0.055 lb/in 3

D22 21.71 lb-in Ply thickness: t = 0.0052 in

D 66 =14.14 lb-in

D12 =12.64 lb-in

D16 =4.78 1b-in

0 26 =4.78 lb-in

Figure 1. Geometry and Material Properties of a
Laminated Plate
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Some Imolicdtions of Warping Restrdint

5.5 on the Behavior of Composite Anisotropic Beams*
• o • . .**

Dr. Gabriel A. Oyibo

Polytechnic University

Farmingdale, New York

5.5.1 Nomenclature

(x,y,z,), (X0 ,yoZ 0 ) - physical and affine space

coordinates, respectively

a. chordwise integrals

App) differential-aerodynamic pressure dis-

tributions in physical and affine space

respectively

r,LL D ,D ,  generic nondimensionalized stiffness

parameters

L= affine space running aerodynamic lift-
0 0

and moment, respectively

UU virtual work expressions in physical. and,

affine space, respectively

elastic constants-lj

= affine space material, and air "density,.

respectively
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w - displacement

hj - wing box depth

01(ho0 ) - affine space bending and torsional dis-

placement, respectively

c, c - affine space half-chord and chord, res-

pectively

ko 0 affine space half-span for the wing

e - parameter that measures the location of

the elastic axis relative to mid-chord

m - affine space mass per unit span

= vibration frequency

5. 5.2 Introduction

The performance of modern supermaneuverable aircraft can be made

to benefit a great deal from, significant advances in materials

technology and the availability of more accurate aerodynamic pre-

diction capabilities. Supermaneuverability as a design goal in-

variably calls for an optimization of the design parameters. Op-

timization may be partially accomplished for example, by using

composite materials to minimize weight. Indeed, it has been known

that these composite materials can be tailored to resolve the dy-

namic or static instability problems of these types of aircraft.

The concept is referred to as aeroelastic tailoring.

While aeroelastic tailoring has tremendous advantages in the design

of an aircraft, the analysis which provides the basis for the aero-

elastic tailoring itself is generally very involved. This is ra-

ther unfortunate since a good fundamental physical insight of the

tailoring mechanism is required for accurate and reliable results;
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In this paper an attempt is made to look at some dynamic theories

that can be used to understand the aeroelastic tailoring mechan-

ism. Specifically, the accuracy of the St. Venant torsion theory

which is relatively simple and frequently used in aeroelastic

analysis is examined with particular reference to the effects of

the wing's aspect ratio as well as other design parameters.

Although earlier studies1 '2 '3 have indicated that the St. Venant's

torsion theory is reasonably accurate except for aircraft wings

with fairly low aspect ratios, the theory supporting that conclu-

sion was based on the assumption that the wing is constructed of

isotropic materials. Basically, the St. Venant's torsion theory

assumes that the rate of change of the wing's twist angle with

respect to the spanwise axis is constant (forlconstant stiffness

and torque). This assumption is hardly accurate particularly for

modern aircraft construction in which different construction mate-

rials are employed and the aerodynamic loads vary significantly

along the wing's span. However, References 1-3 have shown that

(in spite of such an inaccurate assumption) the main parameter

that determines the accuracy of the St. Venant's theory is the

wing's aspect ratio. Thus, it was determined that the theory is

fairly accurate for moderate to high aspect ratio wings construc-

ted of isotropic materials. In recent studies 4'5 however, it has

been shown that for wings constructed of orthotropic composite

materials, the conclusions of References 1-3 need to be modified.

Rather than using the geometric aspect ratio of the wing to deter-

mine the accuracy of St. Venant's twist theory, it was suggested

that a generic stiffness ratio, as well as an effective aspect

ratio which considers the wing's geometry and the ratio of the
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principal directional stiffness, should be considered in estab-

lishing the accuracy of St. Venant's theory.

The present paper is basically an extension of the studies that

were begun in References 4 and 5. In this study the task was to

examine the role of coupling (elastic coupling) on the accuracy

of St. Venant's theory applied to static problems. It was dis-

covered that coupling plays a very significant role on the ac-

curacy of St. Venant's twist theory.

5.5.3
Formulation

Consider an aircraft wing fabricated of composite materials and

mathematically idealized as a canti-levered plate subjected to

forces and moments. It can be shown that the equations of motion

for such a model can be described as follows.

a 1h 0 +iv iv + a5oiii+ p h1lo 2o o+Poalh

pao =Lo (1)

iva iii iv_ ii. +
a2 h0  -a5 ho  +a 3 to  a4cc0  + poa 3ao

POa 2ho= Mo

where

0c2 2a1 = f dx° ; a2 = f x° dx° ; a3  f x0 do

eco e o  0

c ,*2

a = 2 f o D (l-)dx 
(2)

e4 0
ec0 c

f 0 An dx a 5 = 0 L dx

L f 0pd ; 0_ 2 oe o ec0

M o o p0d

ece

0
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and
C

-c<e0 ; 1-3

C .
(3 )

a- 0 at

U ()22) 1/4 D* 12 + 2 66022 (DII 11 D (0 22)i/

D 12
-0* -= D 12 1/2 (4)

(D1 1 D2 2 )

4D1 4D2

L 4 1 6  L 46
S (D 1 1 3/4(D2 2 ) 1/4 2 (D 1 1/ 4 (D2 2 ) 3/4

Lp 6P Po = ph
o D22 2

D. iare the elastic constants, p, is the material density, Ap is

the differential pressure distribution, w is the displacement, t

is the time, and h is the wing box depth.

5.5.4

Evolution of Warping Parameters

The evolution of the warping parameter with which to study the

aeroelastic warping constraint phenomenon for wings fabricated

of composite materials is a process that depends on the sophisti-

cation of the wing's mathematical model; whether coupling ef-

fects are included, whether the wing's chordwise curvatures are

included and so on. Therefore, any warping parameter is as good

as the corresponding wing's displacements assumptions. However,

the virtual work equation makes it possible for the analyst to

determine its effective independent variables even before the dis-
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placement assumptions are made. By non-dimensionalizing the

spanwise space variable in Equation (1), depending on whether one

is interested in the static, dynamic, coupled or uncoupled dis-

placements, one of the following warping parameters may be useful.

= o /3 *

x 0c c Do (5)

00c 3 c Do __2 6

D 0 D (1-c) (7)

(2 /C ) is defined as the wing's effective aspect ratio and D0

and L are the generalized stiffness and coupling ratios respective-

ly (defined in earlier work such as References 5 and 6).

Equations (5) and (6) represent the appropriate warping parameter

for dynamic deformation, static displacement with elastic cross-

coupling.

It was discovered in this study that evolving the warping param-

eter in a manner shown in Equation (1) thru (3), should enable one

to effectively investigate the effects of warping on the composite

wing's dynamics (or the accuracy of St. Venant's theory.) From the

lamination theory for composites it is known that while D and

( 0/C0 ) are always positive, L can be positive or negative.

However, from Equations (1) and (3), it is clear that whether a

composite wing has positive or negative coupling, the warping ef-

fect (in terms of c) is unchanged.
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Computations

By using the evolved warping parameters defined in Equations 7 and

8 and appropriate boundary conditions, the boundary value problems

associated with Equation (4) are solved in a closed-form manner to

determine the wing's static twist.

The wing loading conditions considered in this analysis are as

follows: (a) steady state distributed twist loads and (b), steady

state concentrated twist oads.

5.5.6
a. Steady distributed twist loads

For a wing with a constant uniformly distributed spanwise

twisting moment, f0 resulting from a steady state coupled

bending-torsion displacements, the exact closed form solutions

for the mode shape at6 satisfying the appropriate boundary con-

ditions is given by

6f £2 F -2 n6f (yo P o0o YO sinh4X CYO
o c 3  (4 )2 YO 2 4 A

( c (8)

1 (tanh4c + - (cosh4X 
4c 4 c osh4 c I

Equation 8 is therefore a closed form coupled twist distribution

for a composite wing with the warping effects accounted for.

where

YO = YO/£ 0  (9)

When equation 8 is evaluated at the wing tip and compared to an

equivalent expression predicted by St. Venant's theory, the fol-

lowing expression is obtained.

a (1) tanh4X -
a (1)2X - -1)(10)a 0 St.V 2X 9X 2 cosh4X

c c c
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where a° (1) is the wing tip twist givenby equation 15 while

c0 (1) is the wing tip twist given by the St. Venant torsion

theory. A plot of equation 10 is shown in Figure 1.
5.5.7
b. Steady state concentrated tip twist loads

If the wing is under the influence of a concentrated

twisting moment, F at the tip as a result of a steady

state coupled bending torsion displacement, the exact

closed form twist distribution that satisfies these

equations of motion and their associated boundary

conditions is given by

6F 0 t sinh4Ac y tanh4X
ao(Yo) 3 -2 YO4

c (4Xc) c c

(coshA CY 0 1)]

When the twist distribution given by equation 11 is evaluated at

the wing tip and compared to its counterpart predicted by the

St. Venant's torsion theory the following expression is obtained.

a (1) tanh4X0 -1- c (12)

Co(1)St.V 4 c

It should be noted that the ratio given by equation 12 was plot-

ted for the real values of T in references 5 and 6 and was shownc

to represent conditions where any errors resulting from using St.

Venant's torsion theory are conservative (over-design rather than

under-design). In this analysis equation 12 is examined when Xc

is imaginary, which is possible if L2 is very large. Under

such circumstances, equation 12 becomes

a (1) tan4X3
0 -1 c (13)

stv 
426
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Figure 2 depicts the conditions given by equation 13. It is

therefore seen from the figure that there are certain ranges of

Xc for which nonconservative errors are possible by using the

St. Venant's twist theory.

5.5.8
Results and Conclusions

The results are shown in Figures 1 and 2. Figure 1 shows a com-

parison of the static wing tip twist obtained in the present

study and that obtained via St. Venant's twist theory in the pres-

ence of statically distributed forces and low to moderate

coupling. Figures 2 shows the trend for concentrated forces and

substantial coupling. In Figure 1 it is seen

that the presence of coupling makes the errors of St. Venant's

theory worse. This seems to suggest that the more sophisticated

theory is wore important for wings with coupling (e.g., wings

aeroelastically-tailored using elastic cross-coupling).

ao(1)
Figure 2 also shows that nonconservative errors (i() 1>i) are

a0
are possible. St.V

Using Figures 1 and 2, the following conclusions can be summar-

ized: (i) ignoring warping arbitrarily using St. Venant's theory

could result in very significant errors (as high as over 80% er-

rors) in analytical results for composite aircraft wings, (ii)

warping is more important (St. Venant's theory is less accurate)

for wings with coupling, (iii) St. Venant's theory (which has al-

ways been shown to be conservative (1,2) can be non-conservative

or St. Venant's approximation can lead to an unsafe design error

(under design rather than over design from a stability point of

view).
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Figures

Figure 1: Wing Tip Twist Ratios for Simple and More Involved

Theory (distributed load and low to moderate coupling)

.Figure 2: Wing Tip Twist Ratios Comparing Simple and More In-

volved Theory (with substantial coupling)
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